Structural Studies, Repairs and Maintenance of HERITAGE ARCHITECTURE XIV

Editors
C.A. Brebbia & S. Hernández
Structural Studies, Repairs and Maintenance of Heritage Architecture XIV
FOURTEENTH INTERNATIONAL CONFERENCE ON STRUCTURAL REPAIRS
AND MAINTENANCE OF HERITAGE ARCHITECTURE

STREMAH XIV

CONFERENCE CHAIRMEN

C.A. Brebbia
Wessex Institute of Technology, UK

S. Hernández
University of A Coruña, Spain

INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE

J. Bakowski
L. Basset
R. Brueckner
R. Cerny
C. Cuadra
F. Fatiguso
A. Guida
P. Lambert
J. Lluis i Ginovart
G. Manos
S. Niederhagemann
J.C. Ochoa
C. Osasona
A. Pagliuca
F. Palmisano
S. Sorace
M. Sykora
S.S. Zubir

Organised by
Wessex Institute, UK

Sponsored by
WIT Transactions on the Built Environment
International Journal of Sustainable Development and Planning
C-L Chiu University of Pittsburgh, USA
H Choi Kangnung National University, Korea
A Cieslak Technical University of Lodz, Poland
S Clement Transport System Centre, Australia
J J Connor Massachusetts Institute of Technology, USA
M C Constantinou State University of New York at Buffalo, USA
D E Cormack University of Toronto, Canada
D F Cutler Royal Botanic Gardens, UK
W Czyczula Krakow University of Technology, Poland
M da Conceicao Cunha University of Coimbra, Portugal
L David Károly Rébort College, Hungary
A Davies University of Hertfordshire, UK
M Davis Temple University, USA
A B de Almeida Instituto Superior Tecnico, Portugal
E R de Arantes e Oliveira Instituto Superior Tecnico, Portugal
L De Biase University of Milan, Italy
R de Borst Delft University of Technology, Netherlands
G De Mey Universiteit van Ghent, Belgium
A De Montis Universita di Cagliari, Italy
A De Naeyer Universiteit Ghent, Belgium
P De Wilde Vrije Universiteit Brussel, Belgium
D De Wrachien State University of Milan, Italy
L Debnath University of Texas-Pan American, USA
G Degrande Katholieke Universiteit Leuven, Belgium
S del Giudice University of Udine, Italy
G Deplano Universita di Cagliari, Italy
M Domaszewski Universite de Technologie de Belfort-Montbeliard, France
K Dorow Pacific Northwest National Laboratory, USA
W Dover University College London, UK
C Dowlen South Bank University, UK
J P du Plessis University of Stellenbosch, South Africa
R Duffell University of Hertfordshire, UK
N A Dumont PUC-Rio, Brazil
A Ebel University of Cologne, Germany
G K Egan Monash University, Australia
K M Elawady Alexandria University, Egypt
K-H Elmer Universitat Hannover, Germany
D Elms University of Canterbury, New Zealand
M E M El-Sayed Kettering University, USA
D M Elsom Oxford Brookes University, UK
F Erdogan Lehigh University, USA
D J Evans Nottingham Trent University, UK
J W Everett Rowan University, USA
M Faghri University of Rhode Island, USA
R A Falconer Cardiff University, UK
M N Fardis University of Patras, Greece
A Fayvisovich Admiral Ushakov Maritime State University, Russia
P Fedelinski Silesian Technical University, Poland
H J S Fernando Arizona State University, USA
S Finger Carnegie Mellon University, USA
E M M Fonseca Instituto Politecnico de Bragança, Portugal
J I Frankel University of Tennessee, USA
D M Fraser University of Cape Town, South Africa
M J Fritzler University of Calgary, Canada
U Gabbert Otto-von-Guericke Universitat Magdeburg, Germany
G Gambolati Universita di Padova, Italy
C J Gantes National Technical University of Athens, Greece
L Gaul Universitat Stuttgart, Germany
A Genco University of Palermo, Italy
N Georgantzis Universitat Jaume I, Spain
P Giudici Universita di Pavia, Italy
L M C Godinho University of Coimbra, Portugal
F Gomez Universidad Politecnica de Valencia, Spain
R Gomez Martin University of Granada, Spain
D Gouliaas University of Maryland, USA
K G Gouliaas Pennsylvania State University, USA
F Grandori Politecnico di Milano, Italy
W E Grant Texas A & M University, USA
S Grilli University of Rhode Island, USA
R H J Grimshaw Loughborough University, UK
D Gross Technische Hochschule Darmstadt, Germany
R Grundmann Technische Universitat Dresden, Germany
A Guatierotti IDHEAP, Switzerland
O T Gudmestad University of Stavanger, Norway
R C Gupta National University of Singapore, Singapore
J M Hale University of Newcastle, UK
K Hameyer Katholieke Universiteit Leuven, Belgium
C Hanke Danish Technical University, Denmark
K Hayami University of Tokyo, Japan
Y Hayashi Nagoya University, Japan
L Haydock Newage International Limited, UK
A H Hendricks Free University of Brussels, Belgium
C Herman John Hopkins University, USA
I Hideaki Nagoya University, Japan
D A Hills University of Oxford, UK
W F Huebner Southwest Research Institute, USA
J A C Humphrey Bucknell University, USA
M Y Hussaini Florida State University, USA
W Hutchinson Edith Cowan University, Australia
T H Hyde University of Nottingham, UK
M Iguchi Science University of Tokyo, Japan
L Int Panis VITO Expertisecentrum IMS, Belgium
N Ishikawa National Defence Academy, Japan
H Itoh Fukuhara-cho, Japan
J Jaafar Uitm, Malaysia
W Jager Technical University of Dresden, Germany
Y Jalaria Rutgers University, USA
P R Johnston Griffith University, Australia
D R H Jones University of Cambridge, UK
N Jones University of Liverpool, UK
N Jovanovic CSIR, South Africa
D Kaliampakos National Technical University of Athens, Greece
D L Karabalis University of Patras, Greece
A Karageorghis University of Cyprus
M Karlsson Linkoping University, Sweden
T Katayama Doshisha University, Japan
K L Katsifarakis Aristotle University of Thessaloniki, Greece
J T Katsikadelis National Technical University of Athens, Greece
E Kaesel Massachusetts Institute of Technology, USA
H Kawashima The University of Tokyo, Japan
B A Kazimiee Washington State University, USA
F Khoshnaw Koya University, Iraq
S Kim University of Wisconsin-Madison, USA
D Kirkland Nicholas Grimshaw & Partners Ltd, UK
E Kita Nagoya University, Japan
A S Kobayashi University of Washington, USA
T Kobayashi University of Tokyo, Japan
D Koga Saga University, Japan
S Kotake University of Tokyo, Japan
A N Kounadis National Technical University of Athens, Greece
W B Kratzig Ruhr Universitat Bochum, Germany
T Krauthammer Penn State University, USA
C-H Lai University of Greenwich, UK
M Langseth Norwegian University of Science and Technology, Norway
B S Larsen Technical University of Denmark, Denmark
F Lattarulo Politecnico di Bari, Italy
A Lebedev Moscow State University, Russia
L J Leon University of Montreal, Canada
D Lesnic University of Leeds, UK
D Lewis Mississippi State University, USA
S Ighobashi University of California Irvine, USA
K-C Lin University of New Brunswick, Canada
A A Liolios Democritus University of Thrace, Greece
S Lomov Katholieke Universiteit Leuven, Belgium
J W S Longhurst University of the West of England, UK
G Loo The University of Auckland, New Zealand
J Lourenco Universidade do Minho, Portugal
J E Luco University of California at San Diego, USA
H Lui State Seismological Bureau Harbin, China
C J Lumsden University of Toronto, Canada
L Lundqvist Division of Transport and Location Analysis, Sweden
T Lyons Murdoch University, Australia
E Magaril Ural Federal University, Russia
L Mahdjoubi University of the West of England, UK
Y-W Mai University of Sydney, Australia
M Majowiecki University of Bologna, Italy
D Malerba Università degli Studi di Bari, Italy
G Manara University of Pisa, Italy
S Mambretti Politecnico di Milano, Italy
B N Mandal Indian Statistical Institute, India
Ü Mander University of Tartu, Estonia
H A Mang Technische Universität Wien, Austria
G D Manolis Aristotle University of Thessaloniki, Greece
W J Mansur COPPE/UFRJ, Brazil
N Marchettini University of Siena, Italy
J D M Marsh Griffith University, Australia
J F Martin-Duque Universidad Complutense, Spain
T Matsui Nagoya University, Japan
G Mattirsch DaimlerChrysler AG, Germany
F M Mazzolani University of Naples “Federico II”, Italy
K McManis University of New Orleans, USA
M Saiidi University of Nevada-Reno, USA
R San Jose Technical University of Madrid, Spain
F J Sanchez-Sesma Instituto Mexicano del Petroleo, Mexico
B Sarler Nova Gorica Polytechnic, Slovenia
S A Savidis Technische Universität Berlin, Germany
A Savini Universita de Pavia, Italy
G Schleyer University of Liverpool, UK
G Schmid Ruhr-Universitât Bochum, Germany
R Schmidt RWTH Aachen, Germany
B Scholtes Universitaet of Kassel, Germany
W Schreiber University of Alabama, USA
A P S Selvadurai McGill University, Canada
J J Sendra University of Seville, Spain
J J Sharp Memorial University of Newfoundland, Canada
Q Shen Massachusetts Institute of Technology, USA
X Shixiong Fudan University, China
G C Sih Lehigh University, USA
L C Simoes University of Coimbra, Portugal
A C Singhal Arizona State University, USA
P Skerget University of Maribor, Slovenia
J Sladek Slovak Academy of Sciences, Slovakia
V Sladek Slovak Academy of Sciences, Slovakia
A C M Sousa University of New Brunswick, Canada
H Sozer Illinois Institute of Technology, USA
D B Spalding CHAM, UK
P D Spanos Rice University, USA
T Speck Albert-Ludwigs-Universitäet Freiburg, Germany
C C Spyroukos National Technical University of Athens, Greece
I V Stangeeva St Petersburg University, Russia
J Stasiek Technical University of Gdansk, Poland
B Sundén Lund University, Sweden
G E Swaters University of Alberta, Canada
S Syngellakis Wessex Institute of Technology, UK
J Szmyd University of Mining and Metallurgy, Poland
S T Tamano Hokkaido University, Japan
H Takemiyama Okayama University, Japan
I Takewaki Kyoto University, Japan
C-L Tan Carleton University, Canada
E Taniguchi Kyoto University, Japan
S Tanimura Aichi University of Technology, Japan
J L Tassoulas University of Texas at Austin, USA
M A P Taylor University of South Australia, Australia
A Terranova Politecnico di Milano, Italy
A G Tijhuis Technische Universiteit Eindhoven, Netherlands
T Tirabassi Institute FISBAT-CNR, Italy
S Tkachenko Otto-von-Guericke-University, Germany
N Tomii Chiba Institute of Technology, Japan
N Tosaka Nihon University, Japan
T Tran-Cong University of Southern Queensland, Australia
R Tremblay Ecole Polytechnique, Canada
I Tsukrov University of New Hampshire, USA
R Turra CINECA Interuniversity Computing Centre, Italy
S G Tushinski Moscow State University, Russia
P Tzioropoulos Ecole Polytechnique Federale de Lausanne, Switzerland
J-L Uso Universitat Jaume I, Spain
E Van den Bulck Katholieke Universiteit Leuven, Belgium
D Van den Poel Ghent University, Belgium
R van der Heijden Radboud University, Netherlands
R van Duijn Delft University of Technology, Netherlands
P Vas University of Aberdeen, UK
R Verhoeven Ghent University, Belgium
A Viguri Universitat Jaume I, Spain
Y Villacampa Esteve Universidad de Alicante, Spain
F F V Vincent University of Bath, UK
S Walker Imperial College, UK
G Walters University of Exeter, UK
B Weiss University of Vienna, Austria
H Westphal University of Magdeburg, Germany
J R Whiteman Brunel University, UK
T W Wu University of Kentucky, USA
Z-Y Yan Peking University, China
S Yanniotis Agricultural University of Athens, Greece
A Yeh University of Hong Kong, China
B W Yeigh SUNY Institute of Technology, USA
J Yoon Old Dominion University, USA
K Yoshizato Hiroshima University, Japan
T X Yu Hong Kong University of Science & Technology, Hong Kong
M Zador Technical University of Budapest, Hungary
K Zakrzewski Politechnika Lodzka, Poland
M Zamir University of Western Ontario, Canada
G Zappalà CNR-IAMC, Italy
R Zarnic University of Ljubljana, Slovenia
G Zharkova Institute of Theoretical and Applied Mechanics, Russia
N Zhong Maebashi Institute of Technology, Japan
H G Zimmermann Siemens AG, Germany
R Zainal Abidin Infrastructure University Kuala Lumpur(IUKL), Malaysia
Structural Studies, Repairs and Maintenance of

Heritage Architecture XIV

Editors

C.A. Brebbia
Wessex Institute, UK

S. Hernández
University of A Coruña, Spain
Preface

This book contains most of the papers presented at the 14th International Conference on Studies, Repairs and Maintenance of Heritage Architecture (STREMAH 2015), which was held at A Coruña, Spain, organised by the Wessex Institute, UK. The meeting was sponsored by the International Journal of Sustainable Development and Planning.

The conference has taken place on a regular basis since the first meeting was held in Florence (1989), followed by others in Seville(1991); Bath (1993); Crete (1995); San Sebastian (1997); Dresden(1999); Bologna (2001); Halkidiki (2003); Malta (2005); Prague (2007); Tallinn (2009); Tuscany (2011); and the New Forest, UK (2013), home of the Wessex Institute.

The conference brought together contributions from scientists, architects, engineers, restoration experts, social scientists, planners and economists dealing with different aspects of heritage buildings.

The importance of retaining the world’s cultural heritage cannot be overstated. Rapid development and inappropriate conservation techniques are threatening many unique buildings and sites. STREMAH contributions aim to provide the necessary scientific knowledge to facilitate regulating policies. They also address topics related to historical aspects and the reuse of heritage sites. Technical issues on the structural integrity of different types of buildings, such as those constructed with materials as varied as iron and steel, concrete, masonry, wood or earth are discussed. Restoration processes require the appropriate characterisation of those materials, the modes of construction and the structural behaviour of the building.

STREMAH also considers modern computer simulation studies, which provide accurate results demonstrating the stress state of the building and possible failure mechanisms affecting its stability. Of particular importance are studies related to their dynamic and earthquake behaviour aiming to provide an assessment of the seismic vulnerability of heritage buildings.
The papers presented in this volume, as well as to all other STREMAH conferences since 1993, have been archived in the Wessex Institute eLibrary, where they are easily available to the international community (http://library.witpress.com/).

The Editors are grateful to the members of the International Scientific Advisory Committee and other colleagues for their help in reviewing the papers, as well as to all authors for their valuable contributions.

The Editors
A Coruña, Spain
2015
Contents

Section 1: Heritage architecture and historical aspects

Methodology for the cataloguing and recovery of archaeological remains of architectural heritage
M. Galiana, A. Mas, C. Lerma & J. Roldán ... 3

Morphological and typological assessment of architectural heritage in historical Mediterranean ports
A. Martino, F. Fatiguso & G. De Tommasi .. 15

The application of a schema to Late Gothic heritage: creating a digital model for a spatio-temporal study in Andalusia
P. Ferreira Lopes & F. Pinto Puerto ... 29

The impossibility of linear reading the evolution of reinforced concrete: the case of Spain (1896–1973)
M. Sagarna, L. Etxepare Igiñiz, I. Lizundia & E. Uranga 41

Baroque balconies and masks in eastern Sicily (Italy)
C. Gullo & L. Battaglia .. 51

Re-use of historical buildings in the holy city of Makkah: case study selection guidelines
M. I. Elbelkasy, J. M. AlSalafi & M. F. Mahmoud .. 63

The iron-glass roof of the Milan Gallery Vittorio Emanuele II: knowing the past, understanding the present and preservation for the future
I. Stoyanova ... 75

Imam Ali Shrine, institution and cultural monument: the implications of cultural significance and its impact on local conservation management
S. K. Abid .. 87
Representing Nevis: an approach to reconfiguring the Caribbean heritage sites as cultural space
M. K. Ustick .. 99

The e-Heritage project of Valencian catalogues
M. T. Broseta ... 113

Historic preservation in Aguascalientes, Mexico: urban regeneration, new corporate centralities and sustainability
A. Acosta Collazo ... 125

Section 2: Assessment and re-use of heritage buildings

A meaningful case of structural assessment following the collapse of a historical masonry building
F. Palmisano & A. Vitone .. 137

Modernization and adaptation of historical interiors
J. Bąkowski & J. Poplatek ... 149

Energy models towards the retrofitting of the historic built heritage
F. Fatiguso, M. De Fino, E. Cantatore, A. Scioti & G. De Tommasi 159

Sustainable and energy-efficient rehabilitation of the former hospital of San Salvatore in L’Aquila
P. De Berardinis, L. Capannolo & C. Marchionni ... 171

A framework to analyse historic buildings and interiors
N. Sağlar Önay .. 183

Structural refurbishment of pavilions 15 and 16 of the Madrid slaughterhouse
J. Rey-Rey ... 195

New life cycles for modern ruins
P. Miano & G. Aquilar ... 207

Bayesian strategies for the reliability assessment of heritage structures
P. Croce & F. Marsili .. 221
Section 3: Industrial heritage

The story and conservation problems of an industrial heritage building in Istanbul: the Sütlüce Slaughterhouse
S. G. Kucuk ... 235

Assessment of the New Faliron steam-electric station in Greece
C. Maraveas, K. Tasiouli & Z. Fasoulakis .. 247

A geodatabase of ancient spinning mills in Villa S. Giovanni and Cannitello (Calabria, Italy)
L. Battaglia & G. Rudi ... 261

Section 4: Learning from the past

Towards a specific modernity of architecture: the trade-off between text and context in defining a poetic approach of individual housing in Tunis
E. Bchir ... 275

Passive energy saving strategies in vernacular architecture: parameterization of resources applied to a case study
V. Cristini, J. R. Ruiz Checa, J. L. Higón Calvet & J. L. Palmero Iglesias .. 287

Towards the revival of stone craftsmanship in Egypt:
a rediscovery of forgotten literature
A. El-Habashi & S. Gaafr ... 299

Quality management of interventions on historic buildings
N. Van Roy, É. Verstrynge & K. Van Balen .. 313

Section 5: Material characterisation

Experimental analysis of material properties of historical ceramic bricks and their potential current replacements
Z. Pavlík, T. Kulovaná, J. Žumár, M. Pavlíková & R. Černý 327

An innovative cathodic protection system for steel framed heritage structures
R. Brueckner, R. Merola & P. Lambert .. 337
A material database for the computational assessment of the degradation of historical masonry
L. Fiala, J. Madéra, E. Vejmelková & R. Černý .. 347

Assessment by non-destructive testing of new coating mortars for retrofitting the Architectural Heritage
I. Palomar, G. Barluenga & J. Puentes ... 357

Section 6: Heritage masonry buildings

Evaluation of structural safety and seismic vulnerability of historical masonry buildings: studies and applications in the Tuscany Region
S. Caprili, F. Mangini & W. Salvatore .. 369

Evaluating constructive and typological retrofits in solid masonry historic buildings
S. Alves & J. J. Sendra .. 381

The influence of soil–foundation–structure interaction on the overall behaviour and diseases of a medieval building in Pisa
S. Caprili, F. Mangini, W. Salvatore, G. Scarpelli & N. Squeglia 393

The evolution of Late Medieval Seignorial Residences in the Basque Country: analysis of a Pre-Renaissance Palace: the Guevara Palace in Segura (Gipuzkoa, Spain)
D. Luengas-Carreño, M. Crespo de Antonio & S. Sánchez-Beitia 407

Section 7: Stone masonry walls

When stones are no longer stones
E. Zapatero ... 421

Experimental investigation on the torsion-shear interaction between stone blocks in frictional contact
C. Casapulla & F. Portioli .. 429

Section 8: The masonry construction of Vall d’Aràn
(Special session organised by J. Lluis i Ginovart)

Masonry strain in the Vall d’Aràn churches
J. Lluis i Ginovart, S. Coll-Pla & M. Lopez-Piquer .. 443
FEM assessments on roofing constructive solutions applied to a twelfth century Romanesque church at Vall d’Aran (Spain)
A. Costa, G. Fortuny, J. Fabregat & A. Royo ... 457

The movable and immovable heritage of the Aran Valley and its management
E. Ros Barbosa ... 469

Section 9: Modern (19th/20th century) heritage

A pioneering model of modernization during the Republican era: Eskişehir Sugar Factory (1933) industrial heritage
B. Üstün, F. Kolsal & A. D. Bulut ... 483

Structural assessment and rehabilitation of historic buildings in Galveston, Texas
S. Toker-Beeson .. 495

The design of the modern urban environment of Rovereto, Italy: the valorisation of modern architecture
G. Cacciaguerra & M. P. Gatti ... 507

Valuing workers’ housing as heritage of post-liberation China: measuring public perception of Caoyang New Village, Shanghai
Y.-W. Wang, X. Zhang & L. Sun .. 517

The sacredness of reinforced concrete between structural and formal links
S. Bertorotta & F. Scibilia ... 531

Section 10: Cultural heritage: characterisation, recovery and conservation (Special session organised by A. Pagliuca)

Knowledge and recovery of military architecture: the urban castle of Pomarico (Italy)
A. Guida, A. Pagliuca & G. Damone ... 545

Sustainable reuse of Modern Movement heritage buildings: problems and solutions in Scotland and Italy
A. Guida, A. Pagliuca & B. Dimitrijevic ... 555

Knowledge and qualification of three ancient masonry churches in Pomarico, Italy
A. Guida, M. Laterza, M. D’Amato & A. Pagliuca ... 567
Performance adjustment: a key to the survival of existing buildings
R. Lione & F. Minutoli ... 579

Advancements in shotcrete technology
G. Bernardo, A. Guida & I. Mecca.. 591

Section 11: Surveying and monitoring

Preliminary evaluation of piezoelectric sensors for the prediction of compression failure of brick masonry components
C. Cuadra, N. Shimoi, T. Sasaki & T. Taguchi..................................... 605

Digital photogrammetry as a tool for virtual reconstruction of lost architectures: elevations and three-dimensional models of masonry and brick constructions
M. Cabeza Gonzalez & A. Soler Estrela... 613

Vision-based monitoring of heritage monuments: Unmanned Aerial Systems (UAS) for detailed inspection and high-accuracy survey of structures
N. Hallermann, G. Morgenthal & V. Rodehorst.................................. 621

Conservation of a historic building through sympathetic thermal enhancement
J. Stinson, J. Bros Williamson, A. Reid & J. Currie 633

A survey on the efficiency and safety of the temporary cover systems in architectural conservation and restoration works
C. Ş. Binan & E. T. Sipahioglu... 643

Section 12: Simulation and modelling

Service life assessment of different types of plasters applied for the renovation of architectural heritage
V. Kočí, J. Maděra, & R. Černý.. 657

Historical iron tie-rods in vaulted structures: parametrical study through a scaled model
J. Mora-Gómez.. 669

Effect of different climatic conditions on the degradation of historical masonry in the Czech Republic
J. Maděra, J. Kočí & R. Černý... 681
A parametric-assisted method for 3D generation of as-built BIM models for the built heritage
M. Zheliazkova, R. Naboni & I. Paoletti ... 693

Section 13: Seismic vulnerability

Earthquake damage to Christian basilica churches:
the application of an expert system for the preliminary in-plane
design of stone masonry piers
G. C. Manos, L. Kotoulas, O. Felekidou, S. Vaccaro
& E. Kozikopoulos ... 707

Sensitivity analysis applied to the evaluation of earthquake
damage in historic towers
S. Lentile & S. Russo .. 721

Tools for a large-scale seismic assessment method of masonry cultural heritage
C. Limoge Schraen, C. Giry, C. Desprez & F. Ragueneau 733

Section 14: Wooden structures

Inspection of Palladio’s Bridge in Bassano del Grappa, Italy,
using positioning techniques by ropes
D. Foppoli .. 749

Re-use of historic wooden verandas in Sopot, Poland
J. Poplatek & J. Bąkowski ... 761

Advances for the on-site determination of the stresses state in
timber structures in service
M. Crespo de Antonio, D. Luengas-Carreño & S. Sánchez-Beitia 771

The importance of buildings with base-to-ridge posts in Mexico
in the global history of architecture
E. Koshi & T. Tsuchimoto .. 783

Section 15: Transportation heritage

Restoration conservation works carried out at the historical Malabadi Bridge, Turkey
H. Sert, S. Yılmaz, M. Elbıır, E. M. Partal, H. Demirci, A. Avşın,
M. Nas & G. S. Turan .. 799
An approach to a methodology for the analysis and characterization of disused railway lines as a complex system
A. Eizaguirre-Iribar, L. Etxepare Igiñiz & R. J. Hernández-Minguillón ... 811

Section 16: Social and economic aspects in heritage

Portuguese castles: the territory and the community
J. Faria ... 827

Socialization, learning and perception of urban landscape:
the case of Estella-Lizarra
U. Domblás.. 841

Author index .. 853
Masonry strain in the Vall d’Aràn churches

J. Lluis i Ginovart, S. Coll-Pla & M. Lopez-Piquer
Escola Tècnica Superior d’Arquitectura (ETSA),
Universitat Rovira i Virgili (URV), Spain

Abstract

Located in the north face of the Spanish Pyrenees, it is in the Vall d’Aràn where we find an important ensemble of Romanesque churches built between the 12th and the 16th century. Today those buildings suffer deformations of over 10% from their original shape.

Puig i Cadafalch (1908) pointed out that, initially, the basilica roof had a wooden truss that transmitted the weight vertically. Years later, these were substituted by barrel vaults, supported on non-monolithic circular section masonry columns, which meant deformations on the buildings.

The level of deformation depends on the stereotomy of the pieces and on the vaults building system. This article is about the different constructive systems used in the churches and the quantification of the geometric deformation in relation with them.

After having done the constructive sections of the lay outs of the Santa Maria d’Unha (12th century), Santa Maria de Arties (12–13th century), Santa Maria de Bossost (13th century) and Sant Andreu de Salardú (14th century) churches (between the years 2011 and 2014), the next step has been to study the deformation. These buildings allow us to study the constructive evolution in a period of four centuries.

Keywords: Romanesque, Vall d’Aràn, strain vault.

1 Introduction

In the Pyrenees region of Val d’Aran, there is a set of Romanesque churches built between the 12th and 16th centuries (most of them between the 12th and the 13th), with some particular features which distinguish them from other contemporary buildings. The constructive typology presents the typical
configuration with a central and two lateral naves, covered with a barrel vault and half-vaults respectively.

What distinguish these buildings are the large deformations of the masonry and the buttressing strategies built through centuries to hold them. They have attracted the attention of many architects and historians of construction in Spain through the years. Josep Puig i Cadafalch (1867–1956) [1] made a hypothesis about the covering of these churches. According to his theory, they were covered with a timber structure, and changed for the construction of barrel vaults supported by non-monolithic columns and arches.

From another point of view, Joan Bassegoda i Nonell (1930–2012) [2] stated that the formal anomalies are a feature of the Romanesque architecture produced in Catalunya. Thus, specific peculiarities are set in a characteristic geographic environment; that is the reason of the importance of the early churches in Val d’Aran. One of the most relevant examples of this architecture is the Church of Santa Maria d’Arties. The large movements of the masonry have deformed the structure to the limit, challenging the principles of stability. These large deformations have already been warned, described and studied by several authors as Bassegoda i Nonell [3], Villanueva [4], Saez [5] and Polo and Cots [6].

This construction and Val d’Aran landscape should be saved through the international documents about heritage conservation as the Nara document on authenticity of 1994 [7], Carta del patrimonio vernáculo construido (1999), ratified by the 12th General Assembly of ICOMOS in Mexico [8], and the values to analysis, conservation, and restoration of structures from Architectonic Heritage of 14th General Assembly of ICOMOS, in Victoria Falls, Zimbabwe [9] – all framed within the European Landscape convention, Florence, October 20, 2000 [10].

The interest of Romanic structures made us, the Escola Tècnica Superior de Arquitectura of URV, study them during the 2012–13 and 2013–14 courses. Three campaigns have been made during this period. The first church studied, in winter 2012, was Santa María de Arties, where Basegoda (1972) first noticed the big deformations.

In the second campaign, in spring 2013, Santa Maria d’Arties was studied in more detail. The two campaigns helped us get a perspective of the conditions of Romanic buildings of Vall D’Aran.

In the third campaign, the churches studied were Vilamós, Salardú, Bossost and Unha.

In these three campaigns, a layout of the floor plan and sections of named churches were made. The main characteristics are: the churches have a basilica plan with three naves, two laterals with similar height and one higher central nave. All the churches, except the Vilamos one, have a Romanic apse and all the churches have a bell tower. Finally, the most important characteristic is that all the churches have a central barrel vault and half barrel vault at the lateral naves.

The Church of Santa Maria d’Arties can be defined as a rectangular space of about 19.60x13.8m to the apsidioles (Figure 1). This measure is only an approach, as the great deformations make impossible to accurately set the
general building measures. The construction is raised in the typical East-West orientation, with a central nave and two collaterals, each with four bays with a span of about 5m. The central pillars support the arc formerets under the barrel vault and the lateral half-vaults. In the western side of the church it is found also a wooden choir over the bay of access. The heading is currently finished with a semicircular apse, reconstructed during last years, and the two original apsidioles. All of them are covered with hemispherical domes. The naves present a typical deformation pattern according to the structural arrangement. Vertical supporting elements, especially the pillars, have moved because of the thrusts of vaults.

Figure 1: Plan and section of Santa Maria d’Arties [11].

Figure 2: Plan and section of Mair de Diu dera Purificacion of Bossost [12].

The Church of Mair de Diu dera Purificacion of Bossost (Figure 2) is characterized by being all built according to 12th century style. It has a basilical plan with three apses. The tower belt is in the north-east facade and the construction is rotated 15 grades of east–west orientation. The inner space can be defined as a rectangular of about 19.86×10.97m. The church has six circular columns of freestone.
The Church of Santa Eulària d’Unha (Figure 3) has a basilical plan with three naves. The apse has a Lombard style. In the north–east, it has a tower bell from the 18th century. The construction is raised with the typical east–west orientation and the interior dimensions are 21.27x10.92m.

Figure 3: Plan and section of Santa Eulària d’Unha [13].

The Church of Sant Andrèu of Salardús (Figure 4) belongs to late Romanic (XIII century). The construction is raised with an east–west orientation. The interior dimensions are 24.27x11.76m. In the south–east angle there is a tower belt from the XV century with octagonal ground plan and Gothic vault. Inside it has a Gothic style, covered with ribbed vault over cruciform columns.

The Church of Santa Maria de Vilamós (Figure 5) has a central nave and one of laterals naves with a barrel vault, but the other one is a half barrel vault. The vaults are over four circular and two cruciform columns. The Romanic tower bell is in the south-east facade and the construction is rotated 15 grades of east–west orientation. The inner space can be defined as a rectangular space of about 24.09x9.85m.

The traditional elastic theory is based on resistance, stiffness and stability [16]. The concept of stability rules masonry constructions, thus, historical buildings as the churches of Val d’Aran are ruled by this criteria. These structures shall be assessed considering the overall stability, which sometimes is due to its capacity to assume geometrical deformations.

The theoretical framework for the assessment of masonry structures is currently well developed, according to the principles of limit analysis defined by
Heyman [17] and developed by many authors, like Huerta [18] and Block et al. [19]. Those structures are subjected to compression, being far from its mechanical limits, even in the largest buildings. So, they are considered to have infinite resistance to compression. Also, the tensile strength is considered to be null and the friction prevents sliding between pieces.

2 Objective

The paper sets out the study of the constructive evolution in the churches and the quantification of the geometric deformation in relation with the constructive system of vault used.

The study will be done with the constructive sections of the elevations done in the different churches during the 2011–2014 campaign, from which the admissible mathematic strain deformation will be studied.

This research goes a step further, focusing on the equilibrium conditions of the structure from an analytical point of view. The understanding of the initial conditions will shed some light on the origin of the movements, as well as the assessment of the current geometry.

3 Method

The transversal section has a bigger deformation. It is due to the fact that the nave is a feebler element; the edge walls receive the weight of vaults. The transversal section is composed by: a central vault supported by two columns, and two edge vaults supported by a wall and a column.

In Roman tradition, the columns are distributed through visual patterns. The units are distributed through cross-axial pair. Schemes which employ cross-axial pairs were used in Rome from the fourth to the seventh centuries, and again during the twelfth and thirteenth centuries. In these two periods, however, there is a significant difference in the way the pairs of columns were arranged.

In Early Christian times, the elements were commonly disposed in hierarchical patterns which placed the finest or rarest shafts and capitals closest to the apse, while those of lesser value were relegated to the facade end of the
colonnades. In high medieval churches, the rare or unusual elements were not necessarily placed near the apse [20]. For this reason, when studding a deformation perpendicular to this axis, the section chosen is an indifferent one between two columns. For this study, we choose the section with more horizontal slopes.

The wall deformation is related with its composition, the amount of stone and mortar is important. The evolution of stercotomy has an inflexion point in 1020–1030 years, when the builders researched the plasticity of walls [21]. Vergnolle observed a standardization of stones from 1020 to 1030 years. The stone was longer with a better stercotomy and there is little mortar. The mortar board passes from 7–8cm to 3–4cm.

For this study, it is necessary to measure the vertical wall and columns deformation. The vault has a height, and it is transmitted to the wall. The vault and wall must work jointly to transmit the weigh. The inclination of weight vector is function of vault. The thrust of pointed arch is more vertical than a segmental vault.

The vault may deform due to the leaning of buttresses. The structure is deformed as a three-hinged arch and failure occurs when a fourth hinge is created on the bottom right at the base of the buttress. The expected measure is to reach a maximum lean of 3.0° before collapse, though if buttress fracturing is taken in account, the lean is 2.5° [22].

In the end of the study, a deformation and vault typology will be compared.

4 Calculation of vault typology

The vaults of Vall d’Aran churches are very deformed, but for being able to calculate the original form it is necessary to make the assumption that the length of original vault and the length of deformed vault are the same. In an ideal
situation, where the vault is an arch of circumference with a diameter of 1m, the fraction of arch length and diameter is equal to 1.57m. We calculated the relation between the arch of all the churches and the non-deformed width of vaults and compared it with the ideal situation. The result can be: if relation of arch is higher than 1.57 the arch is pointed; if relation of arch is similar to 1.57, the arch is a barrel vault; and if the relation is lower than 1.57 the arch is a segmental arch.

![Diagram of vault types](image)

Figure 7: Vault length study.

<table>
<thead>
<tr>
<th></th>
<th>Vilamós</th>
<th>Bossost</th>
<th>Salardú</th>
<th>Unha</th>
<th>Arties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vault length</td>
<td>5.27</td>
<td>7.55</td>
<td>7.05</td>
<td>6.27</td>
<td>9.25</td>
</tr>
<tr>
<td>Vault width</td>
<td>3.02</td>
<td>4.59</td>
<td>3.59</td>
<td>4.56</td>
<td>5.96</td>
</tr>
<tr>
<td>Relation</td>
<td>1.74</td>
<td>1.64</td>
<td>1.96</td>
<td>1.375</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Table 1: Vault study.

Another system for studying the vault typology comes from the relation between radius and depth: if the church has a barrel vault, the radius is similar to vault depth. If the church has a segmentated vault the radius is higher than the depth and if the church has a pointed vault the radius is less than the depth.

![Diagram of vault depth](image)

Figure 8: Vault depth study.

<table>
<thead>
<tr>
<th></th>
<th>Vilamós</th>
<th>Bossost</th>
<th>Salardú</th>
<th>Unha</th>
<th>Arties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius measured (a)</td>
<td>1.67</td>
<td>2.40</td>
<td>2.24</td>
<td>1.99</td>
<td>2.94</td>
</tr>
<tr>
<td>Depth</td>
<td>1.51</td>
<td>2.295</td>
<td>1.795</td>
<td>2.28</td>
<td>2.98</td>
</tr>
</tbody>
</table>

Table 2: Vault depth study.
From this study we can be assured that only the Arties Church has a barrel vault. The Church of Unha has a segmental vault and the Churches of Vilamós, Bossost and Salardú have a pointed vault.

In the Vilamós Church, the relation between the distance among columns and the width of pillars is 5. This relation has not a pattern in the other churches.

5 Deformation study

Most of the buildings show deformations in the columns and walls. Other important data is the asymmetry of the deformations. The deformation has been measured in degrees (α) in the wall or column base. Another measure taken is the horizontal movement in the basis of arch (d).

Vilamós has two degrees of deformation in the north vault, one and three in the inner columns and two degrees in the south wall. Unha has two degrees in the north vault, four and three in the inner columns and four degrees in the south wall. Arties has zero degrees in the north vault, one and five in the inner columns and four degrees in the south wall. Therefor the vaults have absorbed part of the deformation. Bossost and Salardú have no inclination (table 3). The Vilamós Church has a horizontal deformation of 11cm with a width wall of 1.66m. Unha has a deformation of 9cm with wall of 1.13m width and Arties has a 3cm deformation with a 0.98m width.

Table 3: Deformation study.

<table>
<thead>
<tr>
<th></th>
<th>Vilamós</th>
<th>Bossost</th>
<th>Salardú</th>
<th>Unha</th>
<th>Arties</th>
</tr>
</thead>
<tbody>
<tr>
<td>α north wall</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>d north wall</td>
<td>0.11</td>
<td>0</td>
<td>0</td>
<td>0.09</td>
<td>0.029</td>
</tr>
<tr>
<td>α north inner column</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>d north inner column</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0.098</td>
<td>0.32</td>
</tr>
<tr>
<td>α south inner column</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>d south inner column</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.09</td>
</tr>
<tr>
<td>α south wall</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>d south wall</td>
<td>0.34</td>
<td>0</td>
<td>0</td>
<td>0.11</td>
<td>0.21</td>
</tr>
</tbody>
</table>

The cylindrical column was adopted from the 10th century and it was used firstly in buildings with wood truss. The masonry pillars were from the 12th century [23]. The proportions of these cylindrical cells appear to depend only on the charge that they support. The walls are of masonry. The results of comparing the degrees with the horizontal movement show that an inclined wall has sagged. This shows us that the north wall, south wall and inner columns have a different inclination.

The response to deformation in Vall d’Aràn churches has been to install buttresses. It is what happens in Arties, Unha and Salardú. Arties in particular, has a higher strain and due to that, it has 51m² of buttress area. Unha has a 12.26 m² buttress area, with a 0.11m strain.
6 Relation between vault and wall deformation

When comparing the typology of the vaults and the deformation of the walls, the result shows us that the deformation is related with the typology of vault.

<table>
<thead>
<tr>
<th></th>
<th>Vault typology</th>
<th>Max. def. (d)</th>
<th>Width wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arties</td>
<td>Barrel vault</td>
<td>0.32</td>
<td>1.60</td>
</tr>
<tr>
<td>Unha</td>
<td>Downloaded vault</td>
<td>0.11</td>
<td>0.88</td>
</tr>
<tr>
<td>Bossost</td>
<td>Apunted vault</td>
<td>0</td>
<td>1.15</td>
</tr>
<tr>
<td>Salardu</td>
<td>Apunted vault</td>
<td>0</td>
<td>1.40</td>
</tr>
<tr>
<td>Vilamós</td>
<td>Apunted vault</td>
<td>0.34</td>
<td>1.62</td>
</tr>
</tbody>
</table>

This explains to us that the relation between width walls and deformation is proportional (table 4). If high vault difference is compared with width of walls and deformation walls, they have an inverse proportional relation. So, the deformation depends on the edge vaults too (Figure 10). If the church has a high height vault difference, there is a lower deformation and if there is a low height vault, there is more deformation.

![Figure 10: Vault study.](image-url)
In this study, the church with more difference between the key of vault is Arties, with 1.91m. It has a maximum deformation of 0.21m. The second church with more deformation is Unha, it has a 1.45m of difference between edge vault and central vault and has a 0.11m of strain. And the Church of Vilamós shows a peculiarity: it has a vault difference of 1.25m between central vault and edge vaults, but the left one is a quarter vault and it has a 0.11m strain and the right vault is a barrel vault and it has a 0.34m strain.

The proportion of inner space is compared with the deformation too, so, to do this study a proportion of three spaces of the transversal section has been measured and compared with the maximum deformation of this space (table 5).

We compared a number of edge vaults with the maximum deformation of its. They show a proportional relation: when the proportions up the deformation up too.

Table 5: Study of deformation – church proportion.

<table>
<thead>
<tr>
<th>Edge space</th>
<th>Vila (l)</th>
<th>Unha (l)</th>
<th>Arties (l)</th>
<th>Vila (r)</th>
<th>Unha (r)</th>
<th>Arties (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>proportion</td>
<td>3.2</td>
<td>2.4</td>
<td>2.7</td>
<td>4</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>deformation</td>
<td>0.11</td>
<td>0.09</td>
<td>0.32</td>
<td>0.34</td>
<td>0.2</td>
<td>0.21</td>
</tr>
</tbody>
</table>

(l.: left edge space; r.: right edge space.)

The proportion and deformation of central vault is not related with the other data because it does not have the same characteristics. The edge vaults send the strength in one direction, while the central vault sends the strength in two opposite directions.

The height and width of church have been compared with the maximum deformation. There we can see that the relation between the width of church and the horizontal movement is proportional. The Church of Vilamós has a height of 6.08m and 9.62m width with an 11cm deformation. The Church of Unha has a height of 6.66m and 10.21m width with a 20cm deformation and Arties has a height of 9.76m and 13.86m width with a 32cm deformation (table 6).

Table 6: Study of dimensions – church proportion.

<table>
<thead>
<tr>
<th></th>
<th>Vilamós</th>
<th>Bossost</th>
<th>Salardú</th>
<th>Unha</th>
<th>Arties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nave height</td>
<td>6.08</td>
<td>8.55</td>
<td>9.09</td>
<td>6.66</td>
<td>9.76</td>
</tr>
<tr>
<td>Nave width</td>
<td>9.62</td>
<td>10.82</td>
<td>11.18</td>
<td>10.21</td>
<td>13.86</td>
</tr>
<tr>
<td>Deformation</td>
<td>0.11</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>0.32</td>
</tr>
</tbody>
</table>

7 Conclusions and future work

This study shows that the vaults of church studied are not only barrel ones, in fact, the Arties Church is the only that has a barrel vault. The Church of Unha has a segmental vault and the Churches of Vilamós, Bossost and Salardú have pointed vaults. This fact is important for understanding the Romanesque construction (wall, columns).
This study shows that the typology of vault is important for the deformation of walls and inclination of columns. An important data is the difference of measures between the height of the central and edge vaults. It has an inverse proportion. If the church has a high height vault difference there is a lower deformation, and if there is a low height vault there is more deformation. The typology of edge vault affect mainly to the wall’s edge. The column between vaults has equilibrium of efforts. The transversal section of Vilamos Church has a central barrel vault, a middle barrel vault with a 0.11m of strain in the left space, and in the right it has a barrel vault with 0.34m of strain.

If we focused the study only in the relation between the church proportion and its deformation, we would make the mistake to think that the proportion of central nave is not important to the strain, but it is, so the general proportion has tiss interest too. Vilamós has a higher proportion, 0.875 (7m height x 8m width) and 0.34m strain; the Church of Arties has a 0.7 of proportion and 0.32 m strain; and the Church of Unha has a proportion of 0.625 and a 0.2m maxima strain. We can affirm that the proportion has a proportional relation with the strain.

For the strain, it is important to know the quality and quantity of masonry. The church with a higher percentage of built walls in relation with the floor area is Vilamos (32.43%) with a 0.34m strain; the Church of Arties has a 30.69% with a 0.21m strain; and the Church of Unha has a 24.95% of built walls and it has a 0.11 m strain. So the wall volume has a proportional relation with the strain.

The current work is based in bi-dimensional documentation. This data is correct for a first approximation to Romanesque. But this first part leads us to working in a more detailed data collection. Actually, we have started taking data of the churches through scan laser. This new information allows us to have clouds of points from all buildings and, for example, to make consecutive sections.

The laser scanner used is a C20 Leica, a compact device for mid-range measurements which uses the time-of-flight principle, with a complete field of view (360° horizontal, 270° vertical) and an accuracy of 6 mm per point up to a range of 50m. Images are captured at each station in order to specify the colour of the points.

Finally, it is not only necessary to go deeper in the study of the mentioned buildings. The Vall d’Aràn has almost 20 Romanesque churches in its boundaries with interest to our study; our intention is to study each of them. The reason why we have chosen the first ones for the study lies in their similar vaults.

Acknowledgements

The authors would like to acknowledge Bisbat d’Urgell and Consellh Generau d’Aran, for kindly opening the door of their churches to our research on architectural heritage.
References

